Design of a General Clinical Notification System Based on the Publish-Subscribe
Paradigm

Antoine Geissbiihler, M.D., Jonathan F. Grande, Randall A. Bates,
Randolph A. Miller, M.D., William W. Stead, M.D.
Informatics Center
Vanderbilt University Medical Center
Nashville, Tennessee

We describe the design and initial implementation of
a notification sub-system, as a component of a
modern information management architecture. The
system, based on the publish-subscribe paradigm,
provides a framework of event-based
communications for the implementation of various
important clinical applications including the
notification of alerts and reminders with escalation
algorithms, the reliable distribution of documents,
and the implementation of intelligent patient-specific
monitoring processes. The initial implementation of
the system, providing the notification of the unit staff’
about new orders, indicates that the model is viable
both in terms of functionality and ability to scale up.

INTRODUCTION

The ability to notify users and applications of new
events represents an essential function of a patient
care information system. Most traditional systems
rely on the demand-driven (or request-reply) model
to query or poll databases for new data. Several
event-based clinical systems have been developed
and proved successful at notifying physicians and
nurses of critical lab values >*° and reminders °.
However, the ubiquitous presence of asynchronous
events in clinical data-processing warrants the
elaboration of a general notification system as one of
the core components of an information management
architecture.

Developments in the field of distributed event-based
computing have produced a communications model,
known as the publish-subscribe paradigm, which
enables decoupled and asynchronous communication
between distributed applications. This model
addresses limitations of the request-reply model, in
particular those related to the ability to handle
events, the addressing of messages and scalability
issues in an heterogeneous, distributed environment.
Several commercial products support this
communications model, and standards such as OMG
CORBA 7 use it as a base for their event services

specifications.

1091—8280/97/$5.00 © 1997 AMIA, Inc.

126

The goals of this project were to investigate how this
communications model could be used and adapted to
provide a general framework for the implementation
of clinical event-driven functions in a large health
center, and to build a working prototype to
investigate the scalability of the model.

BACKGROUND

The publish-subscribe paradigm

The publish-subscribe paradigm provides a
framework for the exchange of data between
independent applications in an event-driven manner,
by decoupling the sources of information (publishers)
from its consumers (subscribers). Publishers
anonymously broadcast messages onto the network
and subscribers anonymously receive messages
without having to request them, unlike the
traditional request-reply communications model,
where each request must be queued and answered
Instead of actual addresses (or the coupling of
specific applications), messages are classified by
subjects which describe their contents and/or logical
destination in a uniform name space. Subscribers
independently look for subject labels of interest,
without regard for the source of the message. The
subject for an abnormal serum potassium level for
patient 12345678 would be:

lab.mr#12345678.serumk . abnormal

a message alerting the surgical ICU of a mass
casualty:
alert.SICU.massCasualty
where the subject describes an event and its
parameters following a pre-defined syntax. For
example, based on the following syntax:
admission.team number.nurses station
the subject:
admission.blue3.9South
refers to a new admission for team blue-3 in nurses
station 9-South. A physician in team blue-3 wanting

to be notified about laboratory results for his patients
and admissions to his team would subscribe to:
Lab.mr#12345678.*
Lab.mr#23456789.*
admission.blue3.*
A rules engine checking potassium levels would
subscribe to:
lab.*.serumk.*

A medical receptionist’s workstation in SICU would
subscribe to:

admission.*.SICU
alert.SICU.*

VUMC’s environment

Vanderbilt University Medical Center’s (VUMC)
patient care information system is built on the
MCIS-1 information system architecture ® which
supports distributed applications and integrated
databases. From the notification system’s design
perspective, the key aspect of this architecture is the
communication subsystem known as the Generic
Interface Engine, which mediates the exchange of
information between applications, and provides
access to institutional databases.

DESIDERATA AND SYSTEM DESIGN

Desired capabilities

We identified a set of required functionalities for the
general notification system, including:

- the distribution of patient-specific events such as
new lab results, new orders, bedside monitor alarms,
with the ability to handle alternative notification
methods (escalation algorithms) in urgent situations
such as critical lab values or STAT order, so that if
the one notification mechanism is not successful
(i.e., there is no acknowledgment of the notification)
within a critical time period, alternative, more
aggressive notification mechanisms will be pursued;

- the reliable distribution of printouts, such as
laboratory requisitions, with the ability to re-route to
backup printers in the case of localized network or
hardware failure;

- the communication of localized or hospital-wide
messages such as a warning of mass casualty, or
technical information about the availability of
applications;

- the support of distributed applications for the
monitoring of specific activities. An example of such
an application, which could be ‘ordered” by a

physician, would be to implement this plan: “patient
X is to be anticoagulated with IV heparin: please
notify the nurse of each new PTT value and

127

recommend adjustements based on protocol Y; notify
the ordering physician if the PTT value is out of the
range specified”. Such an application would both
function as a subscriber (to lab values) and as a
publisher (of recommendations and alerts).
Guaranteed delivery

The publish-subscribe paradigm is characterized by
the anonymous nature of the communication, where
both publishers and subscribers are unaware of each
other.

However, in certain situations, it might be desirable
to guarantee that some subscribers have received a
message. For example, the notification that an urgent
order has been placed for a patient might be received
by several subscribers, but, if one of them
acknowledges the message, the notification should be
considered taken care of, and canceled from the
other subscribers.

Escalation algorithms

The fact that messages can be acknowledged by
subscribers also enables the implementation of
escalation algorithms, i.e., the use of alternative
methods of notification if the preferred one fails. For
example, if an urgent order is not acknowledged
within three minutes when a message is displayed on
the computer screens on the patient’s floor, the
charge nurse could be paged.

To avoid unnecessary delays, the system can
determine if the message to be published has been
subscribed to, and, if not, will immediately use an
alternative notification method: if no workstation is
available to display the message about the new order,
the charge nurse should be paged without delay.

Notifications and notices

The use of escalation algorithms implies that the
notification system controls in some way the method
of notification, which contradicts the notion that a
pure publish-subscribe system should dissociate its
publishers from its subscribers. To maintain this
separation, which is desirable, we distinguish two
entities: the notification and the notice.

The notification is the message generated by a
publisher, which makes no assumptions on how the
message will be delivered. The notification system
receives the notification, assigns a notification
algorithm based on the message’s content, and
executes the algorithm which will produce one or
more notices.

A notice is an attempt to deliver the message. It is
represented by the message itself, and by a subject
which is assigned by the notification algorithm. The

notice is considered delivered when an
acknowledgment is returned by the subscriber, either
as a result of an interaction with a user (e.g., the
message has been seen and the user accepts the
responsibility of taking care of it) or by an
application (e.g., a fax has been successfully sent).
Notices can also be associated with an expiration
date and time. The acknowledgment or expiration of
a notice will trigger a change in the state of the
notification algorithm and several actions can be
taken: the current notice can be removed from the
publishable domain, a new notice can be added, or
the notification can be marked as delivered and the
notification process stops. As subscribers have no
awareness of each other, the removal of a notice
from the publishable domain is an active process,
i.e., a notice to remove a notice.

System architecture

The notification system is composed of five processes
(Fig. 1):

- the Generic Interface Engine (GIE) is VUMC’s
central communication hub to which publishers will
send the messages;

- the Notification Engine Speaker receives
notifications from the GIE and invokes the
appropriate Notification Logic Module to generate
notices, then distributes them to all Notification
Engine Listeners, it maintain a list of active
notifications and their associated notices, and
forwards events such as notices acknowledgments

and expirations to the Notification Logic Module; it
also maintains a central database of notifications,
mediated by the GIE, for recoverability purposes;

- the Notification Logic Modules provide the
message-specific algorithms for generating notices in
response to events generated by the Notification
Engine Speaker;

- the Notification Engine Listeners match the subject
of the notices to the subscriptions of their clients and
distribute the relevant messages;

- the Notification Engine Clients are applications
that subscribe to certain subjects and provide either a
user interface or an application interface to handle
notices and, when appropriate, to acknowledge them.
This layered architecture allows to distribute the
burden of data processing while guaranteeing
recoverability from a central database. As only the
relevant data is transmitted from the Listeners to the
Clients, network traffic is minimized.

There is also a clear delimitation between the
transport mechanism (i.e., the GIE, the Speaker and
the Listeners), the message-dependent logic (i.e., the
Notification Logic Modules) and the subscribing
applications (i.e., the Clients).

CURRENT IMPLEMENTATION

Clinical applications at VUMC include MARS °, an
integrated browser for lab results and text reports
and WizOrder, a care provider order entry system '°

[Laborsorysysem |

g Order entry system l l other publishers of notifications |

S

/

[Generic Interface Engmﬂ -—
Notification Logic Module]
ficat e S
l N m e Notification Logic Module |
/ \ Notification Logic Modnﬂ
I NE Listener | ﬁEListener |
NEclient NE client NE client NE client
L] Monitoring Clinical Printer Pa.ger‘
Application Workstation Application Application
Application

Figure 1. Notification System’s Architecture

MARS is available throughout the institution,
WizOrder is currently implemented for inpatients in
medicine, surgery and OB/GYN.

Notification of orders

We decided to test the concept of an event-based
communication model for the notification of the unit
staff about new physicians’ orders. Several reasons
guided our choice:

- at the unit staff level, the current mechanism of
notification for new physicians’ orders is based on
printouts, which are prone to hardware problems and
manipulation errors such as erroneous discarding or
misplacement in charts; moreover, there is no
reliable way to document the fact that a care-giver is
aware of the presence of new orders;

- several thousands of notifications are generated
from new orders each day and their different
urgencies suggest various notification algorithms and
mechanisms; this would provide enough volume and
diversity to test the scalability of the system.

The Clinical Workstation Client

The main client application of the notification
system runs on the clinical workstations which are
used for patient tracking, order entry, results
reporting, e-mail and other functions. An animated
map of the unit replaces the screen saver, and shows,
with color codes, which beds have pending orders,
and how urgent these are. A visual clue indicates the
status of patients in beds close to the workstation.
When activated, the client application displays the
nurse station census and pending notifications can be
reviewed and acknowledged by nurses and medical
receptionists.

Implementation in the surgical ICU

The system has been piloted in the surgical ICU, a
18-bed unit for trauma and post-operative patients.
SICU is the busiest unit in the hospital both in terms
of acuity of patients and rate of transfer to and from
other locations (ER, operative rooms, radiology). As
orders for SICU patients can be written from various
locations throughout the hospital, and sometimes by
different teams for the same patient, the reliability of
the electronic notification is crucial. A missed or
delayed order could have serious consequences.

Three workstations at the central medical
receptionist’s desk were configured to monitor the
whole unit. Twelve other workstations, located in the
patients rooms, monitored the beds in the same
room. Nurses were asked to acknowledge orders on-
line. Medical receptionists checked that STAT orders
had been seen by the appropriate nurse. The paper

129

notification system was left in place for redundancy
during initial system implementation..

RESULTS

The current notification system runs on three low-
end Pentium®-based servers and handles the 10,000
notifications generated each day by new or modified
orders. It takes 1 to 2 seconds for a notification
reaching the GIE to be updated in all subscribing
clients. There was no measurable increase in
network traffic. Notifications were typically
acknowledged by nurses or medical receptionists
within 2-10 minutes of being issued (Figure 2). Since
the system has been in place, there have been no
reports of “missed” or delayed orders, which is an
improvement over the previous baseline of 1-2
weekly reported incidents. We have not yet
performed a formal comparison with the paper-based

notification system.
100 % -

....

9 11 13 15 17 19 minutes since
notification

0%

ledged notificati

Cosmetic changes were requested by the users to
adjust the intrusiveness of the visual notification by
the client application. Overall, the system was well
accepted, and the unit staff felt comfortable that the
paper-based notification of new orders could be
discontinued.

FUTURE DEVELOPMENTS

As often in such implementation, the system, once in
place, generated enthusiastic suggestions in how it
could be extended to provide other types of
notification, such as new lab results, the advance
warning for the arrival of a severe trauma patient, or
the fact that a specific ICU is full and in diversion
mode. These suggestions will soon be implemented.

One of the advantages of the publish-subscribe model
is that, by decoupling the providers and users of
information, it enables the independent development
of publishing applications, subscribing applications
and notification algorithms.

With the basic notification system implemented as a
component of the information management
architecture, it will be relatively straightforward to

add new publishers such as the laboratory results
(about 10,000 notifications per day), the ADT
transactions (about 3,000 notifications per day), and
various alarm sources. Role-specific clients will be
developed or embedded in other applications, such as
the order entry interfacee. When they become
available, new methods of notification such as e-mail
and fax will be added to the palette of resources of
the notification algorithms.

Numerous non-clinigal applications can make use of
this system, including the notification of network
technicians of a router failure detected by a monitor,
and the ability for developers to subscribe to a list of
published resources such as upcoming upgrades or
changes in other applications. At a lower level,
applications currently relying on the request-reply
mechanism to look for updates can be ‘tvent-
enabled”. As it handles data-driven, user-driven and
time-driven events and can generate new
transactions through the GIE, the notification system
can convert complex, linear, data-processing
schemes into simpler, iterative algorithms.

As the information technology industry is moving
towards distributed event-driven computing, and
already provides working systems that use the
publish-subscribe paradigm, the future role of this
project will not be to duplicate industrial efforts, but
to help understand how this technology can be used
for improving clinical information systems and
enable innovative applications. In essence, the
modular approach of our architecture should permit
the reuse of publishers, subscribers and notification
algorithms, regardless of the transport mechanism,
as long as it supports the basic communications
model.

The two key areas of further investigation and
development are:

- the construction of a uniform hierarchized
nomenclature of messages subjects. This will become
essential as the scope of the system widens, as the
name space of subjects must be shared by all
components of the system as well as the applications
using it;

- the definition of a common syntax for the messages
contents. The use of object technology is a logical
way to approach this problem.

CONCLUSION

The publish-subscribe paradigm offers a powerful
mechanism for the implementation of an efficient,
general clinical notification system. In our design, a
notification is conceptualized both as a message to be

130

delivered and an algorithm to deliver it. The fact that
the algorithm is controlled by a third party, within
the notification system, maintains the decoupling
between the providers and consumers of information,
while providing necessary capabilities such as
acknowledgment and guaranteed delivery.

The role of the notification system goes beyond the
distribution of alerts, and can be used as an efficient
mechanism of asynchronous communication in a
distributed computing environment, and therefore
support the wide spectrum of event-driven
applications of a clinical information system.

References

1. Pryor RA, Gardner RM, Clayton PD, Warner
HR. The HELP system. In: Blum BI ed.
Information Systems for Patient Care. New
York: Springer Verlag, 1984;109-128.

2. Nguyen LT, Margulies DM. The design of a
rule-based clinical event monitor in a multi-
vendor hospital computing environment. Symp
Comp App in Medical Care. 1992:432-6

3. Hripcsak G, Clayton PD. User comments on a
clinical event monitor. Symp Comp App in
Medical Care. 1994, 18:636-640

4. Tate KE, Gardner RM, Scherting K. Nurses,
pagers, and patient specific criteria: three keys
to improved critical value reporting. Symp
Comp App in Medical Care 1995; 19:164-168

5. Kuperman GJ, Teich JM, Bates DW, et al.
Detecting alerts, notifying the physician and
offering action items: a comprehensive alerting
system. Proc AMIA Annual Fall Symp 1996; 20:
704-708

6. McDonald CJ, Tierney WM, Overhage M, et al.

The Regenstrief medical record system: 20 years

of experience in hospitals, clinics and

neighborhood health centers. MD Computing

1992; 4:206-217

http://www.omg.org/

Stead WW, Borden RB, Boyarsky MW, et al. A

system’s architecture = which dissociates

management of shared data and end-user
function. Symp Comp App in Medical Care

1991; 475-480

9. Giuse DA, Mickish A. Increasing the

availability of the computerized patient record.

Proc AMIA Annucal Fall Symp. 1996; 20:633-

637

Geissbuhler A, Miller RA. A new approach to

the implementation of direct care-provider order

entry, Proc AMIA Annual Fall Symp.
1996;20:689-693.

® N

10.

